

Ultrasonic
Object
Detector

sdmay25-36

- Brock Dykhuis
- Nate Clarke
- Nicholas Jacobs
- Jonathon Madden

Phased Arrays Basics

- Utilizes constructive and destructive interference to steer and focus a beam or pulse.
- Each transmitter has its own attenuation (signal area)
 - Taking advantage of well calculated time delay we can enhance the signal in the intended direction, and cancel out unneeded signals outside of the intended scanning range.

Project Overview

 Design an object detector ultrasonic pulses

Use a phased array of transducers

 Rely on reflected sound waves to determine object distance Use of time-delay (phase) to control scanning direction and location

Problem Statement

 Design an ultrasonic phased array system which can detect small objects

- Accurately detect two or more objects in close proximity
- Effectively convey a detection image through the use of an intuitive display

Functionality

- Some example uses in practice include:
 - Medical diagnostics
 - Non-destructive testing
 - Underwater navigation
- In our case the radar will detect small objects, and it is not designed for outdoor use.
- The radar will be able to detect two or more separate objects in close proximity
- The radar will be accurate up to a range of 1 meter.

New Ideas

- Raspberry Pi
 - Send radar data wirelessly through a raspberry pi
- Make improvements on the display, so objects can be clearly seen
 - Outlining, labeling, or color coding potential objects by collecting points in close proximity
 - Improving the precision (down to mm)
- Changes to phased array layout:
 - Additional receivers

Pro/Con Table

Multi Receiver VS. Single Receiver System

Pros Cons

- Increased accuracy (can combine data)
- Increased effective range (combined FOV of multiple receivers)

- More expensive (requiring more receivers)
- Increased components may increase risk of damage
- Higher complexity for necessary calculations (particularly for phase delay)

Constraints

- Low cost for components
- Objects in close proximity should be clearly distinguishable
 - o aiming for 2 cm tolerance
- Clear documentation
- Detect objects at least 1 meter away
- 10 transmitters and at least 1 receiver transducer in a phased array

Requirements

Functional

- Detect objects up to 1 meter away
- Display sweep for detected objects
- Using a phase array with phase delay to determine direction
- Use time delay to determine object distance
- Use 40 kHz ultrasonic pulses

Resource

- Server/Raspberry Pi for wireless data transmission
- External power source for powering the radar
- MA40S4S/R (10S, 1R)

Physical

- 10 transmitter/sender transducers in linear layout
- At least 1 transducer as a receiver
- Transmitters diameter is as small as possible (10 mm in diameter)

Experimental

- Circuit simulator
 - Falstad/LTSpice
- Schematic Designs
 - Plan layout of circuit
- Oscilloscope
 - Test frequency range, components, etc.

Aesthetic

- Clear and readable display
- Clear object groupings

Environmental

- 40 kHz
 - Outside range of human hearing
- High sound intensity (120 dB) must be managed by undervolting transmitters

User Needs

Client Persona

Professor Song

- Ultrasonic radar system to detect objects
- Improve on past implementations of the project

Designers Persona Our Group

- Design an ultrasonic radar
- Learn how sound waves are used to detect objects
- Learn what software and hardware are involved

Purchaser

Theoretical

- Easy to understand and interactive display
- A product that is easy to understand and setup
- Software that is adaptable to various devices (easy to deploy)
- Clear product documentation

Engineering Standards

IPC 2221

- This standard establishes design requirements for PCBs.
- This standard applies to the construction of the radar hardware, since it will be using a PCB board as its foundation.

IEEE 1471-2000

- This standard deals with creating, analyzing, and maintaining software architecture
- Applies due to changing nature of radar display

IEEE 802.11

- This standard is about transmitting data to a computer wirelessly
- Will be using Raspberry Pi to communicate wirelessly

Project Management Style

- Our project requires initial planning for what components to order.
- After determining component specifications we need to draft a design.
- Initial implementation will be creating the hardware design, followed by the display software design.
- We will then test the system and deploy an initial version.
- We will continue to maintain the system, improving its accuracy

Gantt Chart

Task Decomposition

- The first major step is to set the array to a particular phase delay to determine the direction.
- After this the pulses are sent and received, and data is sent to the server.
- The data is then sent to the computer to process
- The data is processed to determine distance and direction
- Processed data is displayed on radar sweep.

Key Risks and Mitigation Strategies

Components

- Be careful with our transmitters and receivers, to make sure we do not fry too many of them
- Research components to ensure they have the right specifications needed for this project

On Task

 We meet weekly with our team and advisor to make sure sufficient progress is made.

Base Knowledge

- To boost knowledge in this top we will consult, area experts (Professors), and related documents.
- Our group will also look over past group projects for information and insight

Areas of Concern

- Accurately sending, receiving, and subsequently processing a signal
 - Requires accurately depicting a mm measurement within the overall range of one meter.
 - The microcontroller, raspberry pi, and display will be required communicate efficiently and transfer data correctly.
 - With the data being processed and manipulated 3 times, we will have to make sure that everything works together smoothly.
- Creating a clear display
 - Ensuring the image is not muddy (if it is depicted with a heat map the streaks should not be exceedingly large)

Detailed Design Hardware

- The hardware describes the physical radar system
- The end goal of the hardware is to send angle determined by phase delay and the distance base on the time delay data to the Raspberry Pi
- The power supply powers the radar system.

The MCU

- Using ESP32-S3-DevKitC-1-N8R8
- Sets the phase delay for the next pulse
 - focuses and determines the direction (angle) of the scan.
- The MCU determines the time delay based on the time a pulse is sent.
- The time delay is used to calculate the distance using the approximate speed of the pulse.
- It sends the distance and angle to the Raspberry
 PI

The Transducers And Filters

- The transmitters send ultrasonic waves that are used for object detection
 - Placed in a linear pattern to function as a phase array
- The receiver detects the waves that reflect off a detected object
- The filters remove the noise (remove the frequencies that are significantly out of range) to make the detection more accurate

Transmitter

Receiver

Detailed Design Server

- Raspberry Pi puts data on a web server to transfer to the computer to display.
- The server transmits data over a wireless connection.

Detailed Design Display

- Data is received from the Raspberry Pi and processed to create a user friendly display.
- The display will show an object's direction and distance.
- An object is depicted as a collection of points.

Computer & Display

Detailed display plots where the object is located User is able to see both the distance and angle the object is at from the radar

Technical Area and Complexities Hardware

- Transmitter placement ensures transmitters are positioned to maximize the signal-to-noise ratio.
- Pulse input filtering incorporates filtering circuits to minimize noise and electromagnetic interference.
- Amplifier design adjusts the gain levels to strengthen the signals without amplifying noise.
- Receiver must be fine-tuned to accurately detect faint echoes.
- Circuit design ensures that the circuit avoids cross-talk and maintains signal integrity.
- Component integration aligns transmitter and receiver characteristics to ensure compatibility.

Technical Area and Complexities Software

- Must accurately account for phase delay for series of transmitters (10).
- Must combine readings from multiple receivers.
- Data must be received, parsed, and sent to the Raspberry Pi in a timely manner
- Display will need to know when new data is sent to the server to accurately display data
- There must be a clear difference between objects

Prototype (Radar)

- Our hardware prototype consists of testing to make sure the sensor can send and receive signals.
 - Currently we have only been testing with 6 transmitters(All go off at same time to)

Display Demonstration

- Displayed randomly generated data to simulate object detection
- Older points become faded to represent relative time of read (readings are limited to 10 at a time in this video)
- Displays current reading in top right corner
- Angles are labeled in 30 degree increments and distance in 10 cm increments

Next Steps (Display)

- Have mouse location be tracked displaying coordinate being hovered on.
 - Allows the viewer to understand the location of prior detections
- Highlight the effective FOV which is expected to be approximately 80 degrees (40 degrees in either direction).
- Determine an efficient method (must not lead to major delays) for object grouping. This may include grouping
 readings with close proximity based on point color
- The display must be changed to read from the Raspberry Pi server
- Minor changes must be made to improve the readability of labels

Next Steps (Radar)

- Implementing phase delay to take advantage of constructive interference to improve signal to noise ratio for readings.
- Processing data to follow easy to use format for the computer to use for the display.
- Transmit data values to the Raspberry Pi server through Wifi.
- Design additional filters to remove unwanted frequencies, and clean the received signal.

Future Implications

- Determine the exact number of receivers to use (before benefits become marginal)
- Potentially migrate the display to C++ with OpenGL or SFML for faster data processing
- Use concurrency to implement phase pulses (potentially using Coroutines)
- Consider expanding radar range based on image clarity

Ideals

Performing Well:

- Financial
 - Taking price into consideration, when selecting parts, opting for the cheapest component of sufficient performance..
 - The total cost of components currently is \$69.79
 - We will handle the components with responsibility to avoid additional costs

Could Improve:

- Health, Safety, and Wellbeing
 - High sound intensity from the transducers.
 - Has an output of 120 dB, this can cause hearing loss.
 - To help solve this issue we will undervolt the transducers to reduce the sound intensity.
 - We will provide a warning to not stand too close to the device, and to use ear protection if the voltage is set to its max value.

Questions?

