

Problem and Requirements

- Brock Dykhuis
- Nate Clarke
- Nicholas Jacobs
- Jonathon Madden

Ultrasonic Object Detector sdmay25-36

Project Overview

Design an ultrasonic radar

Array of transducers

 Rely on reflected sound waves to determine object distance Use of time-delay (phase) to control scanning direction and location

Problem Statement

- Design an Ultrasonic
 Radar System which can detect small objects
- Accurately detect two side-by-side objects

 Effectively convey an image through the use of an intuitive display

User Needs

Client Persona

Professor Song

- Ultrasonic radar system to detect objects
- Improve on past Implementations of the project

Designers Persona Our Group

- Design an ultrasonic radar
- Learn how sound waves are used to detect objects
- Learn what software and hardware are involved

Purchaser

Theoretical

- Understand what the display needs
- Detailed instructions on use

Requirements

Functional

- Detect objects up to 1 meter away
- Display sweep for detected objects
- Using a phase array with phase delay to determine direction
- Use time delay to determine object distance
- Use 40KHZ ultrasonic pulses

Resource

- Server/Raspberry Pi for wireless data transmission
- External power source for powering the radar
- MA40S4S/R (10S, 1R)

Physical

- 10 transmitter/sender transducers in linear layout
- 1 transducer as receiver
- Transmitters are approximately 10mm in diameter

Requirements

Experimental

- Circuit simulator
 - Falstad/LTSpice
- Schematic Designs
 - Plan out Layout of product
- Oscilloscope
 - Test frequency range, components, etc.

Aesthetic

- Clear and readable display
- Clear object groupings

Environmental

- 40k Hz
 - Outside Human hearing range

Engineering Standards

IPC 2221

- This standard
 establishes design
 requirements for PCBs.
- This standard applies to the construction of the radar hardware, since it will be using a PCB board as its foundation.

IEEE 1471-2000

- This standard deals with creating, analyzing, and maintaining software architecture
- Applies due to changing nature of radar display

IEEE 802.11

- This standard is about transmitting data to a computer wirelessly
- Will be using Raspberry Pi to communicate wirelessly

Questions?

